Generalized Ridge Regression Estimator in High Dimensional Sparse Regression Models
نویسندگان
چکیده
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملRegression in High - Dimensional Sparse Models
We consider median regression and, more generally, a possibly infinite collection of quantile regressions in high-dimensional sparse models. In these models, the number of regressors p is very large, possibly larger than the sample size n, but only at most s regressors have a nonzero impact on each conditional quantile of the response variable, where s grows more slowly than n. Since ordinary q...
متن کاملNearly Optimal Minimax Estimator for High Dimensional Sparse Linear Regression
We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints (`q constraint with 0 < q ≤ 1) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic ...
متن کاملThe Sparse Laplacian Shrinkage Estimator for High-Dimensional Regression.
We propose a new penalized method for variable selection and estimation that explicitly incorporates the correlation patterns among predictors. This method is based on a combination of the minimax concave penalty and Laplacian quadratic associated with a graph as the penalty function. We call it the sparse Laplacian shrinkage (SLS) method. The SLS uses the minimax concave penalty for encouragin...
متن کاملGeneralized orthogonal components regression for high dimensional generalized linear models
Here we propose an algorithm, named generalized orthogonal components regression (GOCRE), to explore the relationship between a categorical outcome and a set of massive variables. A set of orthogonal components are sequentially constructed to account for the variation of the categorical outcome, and together build up a generalized linear model (GLM). This algorithm can be considered as an exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics, Optimization & Information Computing
سال: 2018
ISSN: 2310-5070,2311-004X
DOI: 10.19139/soic.v6i3.581